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Abstract. We construct a seven-dimensional Dirac equation for quarks by extending the Klein—
Gordon equation to seven dimensions, introducing a harmonic-oscillator term in the extra three
dimensions, and taking the ‘square root’ of the resulting equation. To facilitate solving the
factored equation, we identify a8 (3) algebra in the higher dimensions and use the eigenstates
of its Cartan subalgebra as basis functions. We find that the eigenstates of the extended Dirac
equation are indeed exact representationsS@{3), one of which we identify with quarks.
Indeed, a whole tower ofU (3) Dirac states appears. For principal qguantum nurniberO, we

find a singlet of mass zero; far = 1, we find two3s of massv/2@, whered is an adjustable
constant; fori = 2, we find two6s and two3-bars, all of mass/4a; etc. Except for the ground
state, allSU(3) representations appear in pairs. It is not clear that the pairs can be identified
with weak-isospin doublets.

1. Introduction

It is well known that the Scliidinger equation for a three-dimensional harmonic oscillator
has solutions which are representations ofSén(3) Lie algebra [1]. These solutions are
ubiquitous in physics, e.g., ionic motion in crystals, independent-particle wavefunctions in
the nuclear shell-model [2], etc.

SU (3) is also the symmetry of quantum chromodynamics. However, here the symmetry
shows up in the ‘internal space’ of the coloured quarks and gluons rather than in Minkowski
space. We pose the following question. Might tHé(3)-symmetry result from a harmonic-
oscillator (HO) ‘potential’ acting in three additional (flat) dimensions? It may not be outside
the realm of possibility that a ‘restraining force’ could exist in higher dimensions. Rubakov
and Shaposhnikov [3] have shown how the toy Lagrangian density

4 4
L=13"0a0)@¢) + 3m°¢* — ap* +1 ) vy oav +gvoy (1)

A=0 A=0
with metric (+, —, —, —; —) can generate a classical solutign= ¢. with a ‘kink’ or

domain wall in the fifth dimension which can trap the Dirac particle. (The sigénﬁqbz
in the Lagrangian generates the kink solutign= (m/+/1) tanhimx® /v/2), wherex® is
the fifth dimension.)

In a relativistic field theory, of course, the field equation for a quark has to be the Dirac
equation, not the Sctidinger equation. Unfortunately the ordinary Dirac equation for a HO
potential does not genera/ (3)-symmetric wavefunctions, nor will an extended Dirac
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equation generate suchU (3)-symmetry in higher dimensions; the extended equation’s
solutions can be factored into an ordinary-space (Dirac) solution and a higher-dimensional-
space solution all right, but the higher-dimensional wavefunction is 86ly3)-symmetric,
essentially because the Dirac operator ‘squares’ the potential.

However, there is a relativistic equation thddes generate exacfU (3)-symmetric
wavefunctions if a three-dimensional HO term is inserted in it, and that is the Klein—Gordon
equation. If a Klein—Gordon equation is extended to an extra three flat dimensions and a
HO term inserted in the extra dimensions, then that equation will geng&tai®)-symmetric
wavefunctions in those extra dimensions [4]. A tower of HO mass-eigenstates results, in
the form of ascendingU (3) 1, 3, 6, ... multiplets.

Since factoring the ordinary Klein—Gordon equation yields a suitable equation for the
QED electron (the Dirac equation), could factoring the extended Klein—Gordon equation
yield a suitable equation for quark Dirac particles? That is, could factoring the extended
Klein—Gordon equation yield an equation which generates ordinary Dirac wavefunctions in
Minkowski-space timesU (3)-symmetric wavefunctions in the higher dimensions? Quarks
could then be coupled to gluons in &W (3)-invariant fashion, as required by QCD.

We will explore this hypothesis in the remainder of the paper.

2. Solutions to the factored higher-dimensional Klein—Gordon equation

The equation to be factored is the seven-dimensional Klein—-Gordon equation
(O-A+a*X%¢p =0 1)

where the Minkowski-spac#* is spanned by the coordinate€(x*, x2, x%) and the higher-
dimensional space?® is spanned by the coordinate$,; (%,, X3). (R3-quantities will be
identified by subscripts rather than superscripts for convenience in what follows.) The
d’Alembertian = Zi:o g"va%/ax*dx” with g"¥ = diag(1, —1, —1, —1), the Laplacian
A=33, 0%/032, and the HO termx? = Z?zlif. The scale inR® is set by&, an
adjustable, real constant of dimension mass or inverse length

To factor (1), one may take advantage of the fact that the equation is separable; i.e. if
one sets

P(x, 3) = ¢ ()P @)
then (1) separates into the equations

O+ M>$ =0 3)
and

(A—a*X?+M*$p=0 (4)

where M? is the separation constant. Equations (3) and (4) can now be factored separately.
Because the factors will commute, one can be taken from each equation and the two added
to form the seven-dimensional Dirac equation.

Equation (3) is factored in the usual way; one can show that

A+M?=( ¥+ M)(—i¥+M) (5)

1 Symbols relating toM*, R3, or M* x R3 will appear: normally, with a tilde above, or in bold face type,
respectively.
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where ¥ = Zizoyﬂa/ax“, with the y* being 4x 4 matrices satisfying’*y" + y'y#* =
2¢* u,v =0,1,2, 3. One can select one of the factors, say the right-most, to form the
Dirac equation

(=i ¥+ M)y =0. (6)
M is taken to be the mass of the patrticle.
Equation (4) in the higher dimensions cannot be factored so easily. We introduce a
linear, first-order differential operatdd and pose the question, does
A—aX%+ M?* 2 (H+ M)(—H + M) = —H? + M? (7)
i.e. does
~A+a*x?2 2 g2 (8)
Three gamma-matrices would suffice to factor the left-hand side of (8) if the HO term were

not present. As it is, another three gamma-matrices are required to eliminatedyoer;
cross terms. Thus we try setting

3 3
H=—i) 7;0/0% + &) 7.5 ©)
j=1 j=1
where
Vivi + iV = 255 j.k=1,2...,6. (10)

Even with six gamma-matrices, (9) does not quite satisfy (8) because of the derivative
operators in the cross terms. Instead (9) yields

3
H? = —A+a*X* —ia®) 75,5 (11)
j=1
However, choice (9) still turns out to h&U (3)-covariant, despite the extra term on the
right-hand side. Therefore we take our Dirac field operator to be one of the factors in the
centre of (7), say the right-most, and construct the candidate field equation

(H— M)y (%) =0. (12)
To guarantee that the mass be real, we maked Hermitian. This is accomplished by
choosing six;?; which are Hermitian.

H given by (9) is somewhat ungainly. Since it is the ‘square root’ of a HO operator,
one suspects that it might be better to express (9) in terms of creation operators

il =(@x;—a /0% j=123 (13)
and destruction operators

a: = @i; +a t0/05:) /N2 j=123 (14)
satisfying

a;ap —agd; =0  j.k=1,23 (15)

Stat sisf O

a~a];—a];ai—0 J. k=123 (16)
and

i ;ag —ala; =65 k=123 (17)
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Indeed, if (9) is so expressed, then one finds that

3
H =<2 (6la; +6al) (18)
j=1
where
0: = (i7; + 75,9)/2 j=123 (19)
and its Hermitian conjugate
éji = (=75 + 75,9)/2 j=123 (20)

The six matrices§]f and é; turn out to be creation and annihilation operators, too, but of
the anticommuting or Dirac variety; from (10) one finds that

é;é,; + é,;é; =0 ]N,IE =123 (21)

atat ATat T

6l6] +616 =0 j k=123 (22)
and

A.aT 3To. — s T

We now construct the ‘square root’ of the seven-dimensional Klein—Gordon equation (1)
by combining (6) and (12) (and (18)) to form

(i ¥®1+1® H)p =0 (24)

here 1 andL are unit matrices in/* and R3, respectively, andy = v (x) ® ¥ (¥). We will
take (24) to be our candidate Dirac equation for qufrks
We must now solve for the eigensolutionsifin R3. One suspects that these solutions
will reveal SU(3) symmetry because the solutions to the parent HO operator (4) display
SU(3) symmetry [4]. If H is indeedSU (3) symmetric, then there will be a set 61/(3)
generators which commute with it. We will look for such a set, as the eigenfunctions of
the Cartan subalgebra can then be used as basis functiofis for
It is well known [5] that aU (3) algebra can be created from the Bose creation and
destruction operatorfsj; anda;, namely, the aIgebré;c”z;, i,j=1,223. Thesele;"&; satisfy
the U (3) (and SU (3)) vector-multiplication rule
[ala;, ala) = Spala; —opala; 0.k =123 (25)
The Ez;&; commute with the HO parent-operator (4) and account forSttig€3)-symmetry
of its solutions. However, thé;c”zf do not commute with#. Rather,
[A.ala;] = V2e(bla; - 0:a) i,j=123 (26)

1 Technically the ten gamma-matrices in (24) are not Dirac matrices because the four matrivels commute

the resulting gamma-matrices in (24) do mutually anticommute and are true Dirac matrices; i.e. if we denote

rrep =" 1p=0123=pn
1@y, =" pn=45..9=3+]
then
YA + 7yt = 29" u,v=012...9
whereg = diag(1, -1, -1,..., —1). The solutionsyy of (24) are unaffected if the equation is multiplied on the

left by 1® 77, so we shall continue to refer to (24) as the candidate Dirac equation for quarks.



Extended SU(3) Dirac equation 3133

Thus the&;aj cannot be generators of arfi/ (3) symmetry that solutions to (12) might
embody.

Another U (3)-algebra can be constructed from the Dirac creation and destruction
operatorsé]f and ;, that algebra being thélféi, i,j = 1,2,3. From (21)-(23), one
can show that this algebra satisfies #&3) vector-multiplication rule

6167, 016 = 85610, — ;0.6; i,jki1=123. (27)
However, this algebra does not commute witheither. Instead
[A.0167) = —V2a(0la; — :a) i,j=123. (28)
But one can see from (26) and (28) tHdtdoes commute with the sum
E;; = ala; +016; i,j=123 (29)
viz.,
[H.E;]1=0 i,j=1,23 (30)

Furthermore, theEU, being the sum of thé! a and the@ 9 also satisfy a/(3) vector-

multiplication rule:

[E;i, El;l.] = 8;;5;1‘—5175];; ;, j, ];,iz 1,23 (31)
These generators are apparently the soughtf@d) algebra. They guarantee that the
eigenfunctions off will be U(3) (and SU (3)) symmetrig.

We can now solve for the eigenfunctions &f, advantageously using representations
of the E;; as basis functions. As noted earlier, these representations will be eigenfunctions
of the Cartan subalgebr&(;, E», Es3). We will solve for the eigenfunctions by first
constructing explicit representations of the éjxand4!, and then constructing{6:, 916,
and6fs.

Recall that six gamma-matrices are required to construcf){rand 9~ Wilczek and
Zee [6] remind us that representing six (or seven) gamma- matrlces requ«resmhtrlces
and they provide a prescription for constructing them. Starting with their rule, we found it

possible to order the gamma-matrices so that each of th(?; alxdéf has just four elements
of 1 or —1; one set is

0 —ep 0 0 0 e O 0
~ e1 O 0 O - —e1, 0 0 O
91 - 91 =
0 0 0 €21 0 0 0 —e12
0 0 —e21 0 0 0 €12 0
T We were led to the generato%j from a study inR* of the Dirac-equatior§ O (4) generators
J[,LU=LM.\)+SM,V M,U=O,1,2,3
where
Ly = —i(x,8/0x, — x,8/0x,) = —i(ala, — ala,)
and

Suv = =1/ Wuvv — voyu);
thus one can write

Juw = _i(a/]:au + %V/LVM) + |(“Iau + %VUV}L)~

We found thamLav + %y,l yy IS not anSU (4) generator (of course), but tha,ﬁav + elev is.
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0 €22 0 0 0 €11 0 0
é _ €11 0 0 0 éT _ €22 0 0 0
2210 0 0 —ex 2710 0 0 —ep
0 0 —e1 O 0 O —exp O
and
0 010 0 00O
~ 0 001 s+ [0 0 0 O
%=10 00 0 %=110 0 o0 (32)
0 00O 0100
where
10 0 1 0 0
€11 = 0 0 €12 = 00 €21 = 10
00
€22 = 0 1
and
10
1- ( ! 1) . (33)
With this choice of thed; andélf, the Cartan subalgebra takes the form
€11 0 0 0
r_ ~t~ 0 €11 0 0
Ei = a,ay + 0 0 ey O (34)
0 0 0 €11
€11 0 0 0
r_ ~t~ 0 €22 0 0
Ey = ayar + 0 0 ey O (35)
0 0 0 €22
and
0 00O
e 0 00O
E33 = azas + 0010 (36)
0 001
To solve for the eigenfunctions of the Cartan subalgebra, it is convenient to recall the
eigenfunctions of the operatoﬁ%d;, i = 1,2, 3. These eigenfunctions satisfy
@l drn, (%) = itz (@) i=123, i#;=012... (37)
(no sum oni), where
¢, (@%;) = constantH;. (aX;) exp(—3a°%7) (38)

with H;. a Hermite polynomial of degre®. Thus an eigenfunction of the trio of operators
Zzi&l, &;&z, andagég is the product
3
[ @%) = @iy
=1
Now consider the eigenfunctions of the Cartan subalgebra, (E2», E33). Each of
these generators is a diagonak 8 matrix with elements eithe?;&; or alia; + 1. Therefore

(39)

~a
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the three = have eight-component e|genfunct|omswh|ch require only a single non-zero
componentﬁnl¢n2¢n3 ﬁ~ =0,1,2,...,i =1,2 3 to satisfy
E]_]_&D = fllé Ezz&) = ﬁzé E33&) = fl3&); (40)
here eachi; = n: or i + 1 depending on whether the corresponding elemeitt:ins a;&;
or Ezll,"&; + 1. Thus the; are non-negative integers.
For every triplet of non-negative integerd (72, i13), there are (up to) eight linearly
independent solution®, namely

&),(3]1.),32 n3 = (éﬁl—l,ﬁz—l,flga Oﬂ 07 Oa 07 Oa 07 O)T
. )
[3pt]®7,. i = (0. $iyinia: 0.0,0,0,0,0)7
s .
[3pr]® . - = (0.0, ¢i,—1iyis 0.0,0,0,0)"
[Bp1]®P .  =(0,0,0, $i, i, 145 0,0,0,0)7

n1,i2,13 (41)

[3pr]®. . =1(0.0,0,0, §, 17, 1,-1.0.0,0)"
[3pt] cbff)nz i3 (0’ 0,0,0,0, (Z’ﬁl,ﬁz,%—ls 0, O)T
[3pt] CDL?M 7 =1(0,0,0,0,0,0, Gin—1iiriis—1, 07
[3pt]®P . . =(0,0,0,0,0,0,0, ¢y i-1i,-1)" -

(T denotes transpose, employed to save space.) Note that the indices of each element
(];;,'1’,3'2,,3/3 must be> 0.

These solutions may be conveniently classified according to their principal quantum
numberi = i1y + 712 + fiz. This is the eigenvalue of the Casimir operator

Ei1+ Exp+ Ezz=C1=N. (42)

For i = O there is just the one eigenfunctiody), This is a singletsU(3) irreducible

representation which we will denoon (We know that it is a singlet because every shift
operator acting on it yields zero, viz&;®o = 0;i,j =1,2,3, i#].)

Forii = 1, there are six elgenfunctlonsb(lzgo, DGy D, and @S, dS, P To
determine what irreps these make up, one may start with any eigenfunction and construct
the remaining members of the irrep using the shift operaﬂaﬁs E32 and E13. In this way
one finds two triplet irreps which we will dendted!” and 2.

Their eigenfunctions are listed in figure 1 next to plots of thedr(3) eigenvalues
(1, 112), Whereriy = 3 (iiy — fip) andsmy = (g + fip — 2ii3)/+/12. These triplets may be
distinguished by the eigenvalues of the operator

A = alay + ala, + alas; (43)
Ad; = Ad; with A’ =1 for Y and 0 ford\*?,
For 7 2 there are 18 elgenfunctlons of the Cartan subalgebra. One can show that

these comprise twés which we will denotedy” and &5, and two3s which we will
denotedy” anddY?. The6s have eigenvalued’ = 2 and 1, respectively, and tf3s have

eigenvaluesA’ = 1 and 0, respectively. Weight diagrams of these multiplets are sketched
in figure 2.

1 When referring to an entire multiplet, we will replace the triplet subscriptsiy, ii3) by 7.
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= (al) = (a2)
&, )
i, .,
< (2) ‘ <(2) . (4) 4 - (3)
Py10 vj D00 - %10’:“7 @09
—1}2 \0 1}2 > n"11 —1}2 0 1}2 o ml
< (2) -6
Door 5
i=1, C)=3, A'=1 i=1, (=3, A=0

Figure 1. SU(3) weight diagrams of the twd = 1 irreducible representations of the generators
Ejsi,j = 1, 2, 3; basis functions listed at weight positions; note signs. Eigenvalues for each

i
irrep listed underneath.

For n = 3 and greater there are always six multiplets; they always appear in pairs,
and the multiplets within each pair always have eigenvalifeshich differ by one unit.
Multiplets throughn = 3 are sketched in figure 2.

It is now a simple matter to solve for the eigenfunctionstbff = Mv. One finds by
direct calculation that

Hdq = 0. (44)
Thus the lowest-lying eigenstate &f is
do = Yo (45)

with eigenmassvfy = 0.
Next one finds that

A = /2501 (46)
and

ABY? = —J2ad. (47)
Thus the next lowest eigenstates léfare

(C‘I‘Dg-al) _ C‘I‘)g-aZ))/\/é = ~::-a+) (48)
and

(@Y + ) V2= gy (49)

with eigenmassesf; = +/2@ and —+/2a, respectively.
In the case of thé& = 2 sextets one finds that

HOY = —/4ad§? (50)
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[\
T

A

0 L °

Figure 2. Weight diagrams ofi = 0-3 irreps of theSU (3) generatorsl::lr;. These are also the
weight diagrams of thé = 0-3 eigenfunctions of the mass operafbr

and

HOY? = —4ad§™ (51)
so the corresponding eigenfunctions iéfare

(&)(zal) _ q~>(2a2))/ﬁ = ~£a+) (52)
and

(@3 + 52 V2= g5 (53)

with eigenmassesf, = +/4@ and —/4&, respectively. Similarly, in the case of tiie= 2
triplets one finds that

HOYY = —Vaady? (54)
and
HOY? = —VaaddY (55)

so the corresponding eigenfunctions ifare

(&)(be _ &)(sz))/\/é — ~2(b+> (56)
and

(@47 + 847)/V2 = g 7
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again with eigenmassed, = /4@ and —+/4a, respectively.

Thus H not only generateSU (3) multiplets, but an ascending mass-spectrum of them.
We might have anticipated this from the properties of the parent, equation (4).

Note thatH acts to term on@ = 2 sextet into just the other sextet, or ohe= 2 triplet
into just the other triplet. Why is this?

() H commutes with the (second) Casimir operator

3
Y EjE;=C (58)

so it cannot change the eigenvaluestaf(which we will denoteC5); the sextets have one
common eigenvalu€’, the triplets another;
Cr5" = 8oy i=12 (59)
and
C20Y" = 4" i=12 (60)
(i) H is odd ina; andd}, so it changes the value of by one unit.
For /i = 3 multiplets, where three pairs of like multiplets occéf,acts on oneSU (3)
multiplet and just turns it into its sister multiplet because each pair shares a common

eigenvalue@é and the values of the three pairs are distinct. Thusitee3 eigenfunctions
of H are

(C”I’)(gml) F &)émz))/\/é = ~?(’m:i:) m=a, b, c (61)

with eigenmassesfs = :i:[G&. i )
Similar eigenfunctionsjr“*, ¥+ and ¥“* occur forii > 3, with eigenmasses
M; = +v/274.
We can now determine the solutions to the candidate Dirac field equation
(- ¥®1+1® H)p =0. (62)

(See footnote below (24).) The solutions are simple direct prodiicts v (x) ® ¥ (%),
wherey (x) satisfies theM*-equation

(=i ¥+My =0 (63)
and v (X) satisfies theR3-equation
(H— M)y (&) =0. (64)

If the massM of the multiplet is positive, as in the case fri) = ¥ ", m = a, b, c,
then the Minkowski-space wavefunctigh satisfies the equation

(—i v+ @&) Y (x) = 0. (65)

(Indices denoting momentut® and mechanical spifr in Minkowski space are suppressed,
i.e., V5 rm (x) = ¥5(x).) If the massM of the multiplet is negative, as is the case for

V(&) = 1}},’"‘), m = a, b, ¢, then the corresponding Minkowski-space wave equation can
be multiplied on the left by ® = iy%y1y2y2 to yield the positive-mass equation

(—i ¥+ @&) V5 (x) = 0. (66)
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Thus we arrive at the pair of solutions

va(0) @ ¥V (%) = ¢ (@) (67)
and
5 7m=) o~y o (m—)
YY) @Yy (X)) =vy (x) (68)
with M; = v/27a. i
The full complement of solutions consists of the ground siage Vo = 1, plus
ascending pairgh)?"* for i = 1,2,3,..., withm = a for i = 1, m = a, b for ii = 2,

andm = a, b, ¢ for 1 > 3. The weight diagrams for eigenstates with lévare shown in
figure 2.

3. Discussion

In order to generate Dirac eigenstates augmented by QCD colour quantum numbers, we have
proposed the field equation (24), which is essentially the ‘square root’ of a Klein—-Gordon
equation in seven flat dimensions with a HO term in the extra three dimensions. Dirac states

with quark colour quantum numbers do indeed appear, namely the two solutions denoted

“*) in section 2. These states can be coupled to eight coloured ghibhto yield the

SU (3)-invariant interaction Lagrangian
3
. g _ ~ ~ ;7
= GRS [ [ - iwieds 69)

(N is defined by (42)). If stateg in (69) are limited to quark triplets, then this Lagrangian
is equivalent to the standard QCD interaction Lagrangian

int

LGep = Yy M Gl (70)

1

S
Il

N0
e

c

(see, e.g., [7]), where

G3 =Wyt —w?)/V2 (71)

G8 = (Wit + w2 —2w®)/V/6 (72)
and

Gl = (W2 + W2h/v/2 (73)

G2 =i(W2—wH)/V2 (74)
etc.

Equation (24) generates a surprisingly rich spectrum of states, especially considering
that all of the eigenfunctions are real. Particularly interesting is the feature that, except for
the ground state, all of the multiplets appear in pairs. Thus it is natural to ask whether these
pairs can be identified with another symmetry of standard-model Dirac particles, namely,
weak isospin.

If these pairs are indeeldona fideweak isospin pairs, then there exist operators, say
¥1, 35, £3, and I, which, when operating on one member of any doublet, (i) only turn it
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into a linear combination of the same doublet states, and (ii) obey the vector-multiplication
rules of SU (2), namely

[5, 5:] = 2i%; i,j, k=123 cyclic (75)

Condition (i) is satisfied if the operator commutes with th® £;;, i, j = 1,2, 3. We have
found four such operators, viz.,

3
@Y @l +6a) =% (= f/v2a) (76)
i=1
3 ~. ~ ~
iy°® Y (@0la - bal) = 3 (77)
i=1
3 ~. ~ ~
10 @a; —616) = 5 (78)
it i 3
i=1
and
3 ~ ~ ~
1® Y (@a:+0/6)=N. (79)

However,ii, f:/z, and ig do not quite obey the vector-multiplication rules (75). Two of
the relations are obeyed, viz.

(25, 85 = 2i%} (80)
and

(25, £1] = 2i%). (81)
However, the third is not;

[Z], 85] =2i%; — 4iP (82)

where
~ 3 ~Ll o~ 1

In addition, thefJ;f2 do not equal the unit matrix as they should in a two-dimensional
representation ofU (2). Rather,2;? = £,2 = N and 4% ~ N2.

If, on the other hand, operators can be found whdchobey the vector-multiplication
rules of SU (2) when operating on the doublets, then it may be possible to identify all three
generations of quarks and leptons with representations of (12) extended to four dimensions,
i.e. with

4
H=+/2& Z(é}é. + 7&}). (84)
j=1

The eigenfunctions of (84) are exaft/ (4) representations, and resemble those depicted in
figure 2: a ground state, twés in place of the3s, two 10s in place of thebs, etc. In an
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Figure 3. Weight diagrams ofi = 0-2 irreps of the mass operatéf; some Dirac-particle
assignments are indicated.

SU(3) ® U(1) decomposition, each breaks to3 @ 1, each10 breaks to6 ® 3 ® 1, etc.
Leptons would be identified with thes and quarks with th8s.

These assignments can be inferred from the seven-dimensional model if we imagine that
the SU (3) states are replaced by t#U (2) states. Then quark triplets become doublets,
leptons remain singlets, and the first two generations can be identified with th6—-2
irreps as in figure 3. The ground state could be a candidate for dark matter. Other
unidentified states would be predictions.
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