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Abstract. We construct a seven-dimensional Dirac equation for quarks by extending the Klein–
Gordon equation to seven dimensions, introducing a harmonic-oscillator term in the extra three
dimensions, and taking the ‘square root’ of the resulting equation. To facilitate solving the
factored equation, we identify anSU(3) algebra in the higher dimensions and use the eigenstates
of its Cartan subalgebra as basis functions. We find that the eigenstates of the extended Dirac
equation are indeed exact representations ofSU(3), one of which we identify with quarks.
Indeed, a whole tower ofSU(3) Dirac states appears. For principal quantum numberñ = 0, we
find a singlet of mass zero; for̃n = 1, we find two3s of mass

√
2α̃, whereα̃ is an adjustable

constant; forñ = 2, we find two6s and two3-bars, all of mass
√

4α̃; etc. Except for the ground
state, allSU(3) representations appear in pairs. It is not clear that the pairs can be identified
with weak-isospin doublets.

1. Introduction

It is well known that the Schrödinger equation for a three-dimensional harmonic oscillator
has solutions which are representations of anSU(3) Lie algebra [1]. These solutions are
ubiquitous in physics, e.g., ionic motion in crystals, independent-particle wavefunctions in
the nuclear shell-model [2], etc.

SU(3) is also the symmetry of quantum chromodynamics. However, here the symmetry
shows up in the ‘internal space’ of the coloured quarks and gluons rather than in Minkowski
space. We pose the following question. Might theSU(3)-symmetry result from a harmonic-
oscillator (HO) ‘potential’ acting in three additional (flat) dimensions? It may not be outside
the realm of possibility that a ‘restraining force’ could exist in higher dimensions. Rubakov
and Shaposhnikov [3] have shown how the toy Lagrangian density

L = 1
2

4∑
A=0

(∂Aφ)(∂
Aφ)+ 1

2m
2φ2 − 1

4λφ
4 + i

4∑
A=0

ψγA∂Aψ + gψφψ (1)

with metric (+,−,−,−; −) can generate a classical solutionφ ≡ φc with a ‘kink’ or
domain wall in the fifth dimension which can trap the Dirac particle. (The sign of1

2m
2φ2

in the Lagrangian generates the kink solutionφc = (m/
√
λ) tanh(mx(4)/

√
2), wherex(4) is

the fifth dimension.)
In a relativistic field theory, of course, the field equation for a quark has to be the Dirac

equation, not the Schrödinger equation. Unfortunately the ordinary Dirac equation for a HO
potential does not generateSU(3)-symmetric wavefunctions, nor will an extended Dirac
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3130 R A Bryan and M M Davenport

equation generate suchSU(3)-symmetry in higher dimensions; the extended equation’s
solutions can be factored into an ordinary-space (Dirac) solution and a higher-dimensional-
space solution all right, but the higher-dimensional wavefunction is onlySO(3)-symmetric,
essentially because the Dirac operator ‘squares’ the potential.

However, there is a relativistic equation thatdoes generate exactSU(3)-symmetric
wavefunctions if a three-dimensional HO term is inserted in it, and that is the Klein–Gordon
equation. If a Klein–Gordon equation is extended to an extra three flat dimensions and a
HO term inserted in the extra dimensions, then that equation will generateSU(3)-symmetric
wavefunctions in those extra dimensions [4]. A tower of HO mass-eigenstates results, in
the form of ascendingSU(3) 1, 3, 6, . . . multiplets.

Since factoring the ordinary Klein–Gordon equation yields a suitable equation for the
QED electron (the Dirac equation), could factoring the extended Klein–Gordon equation
yield a suitable equation for quark Dirac particles? That is, could factoring the extended
Klein–Gordon equation yield an equation which generates ordinary Dirac wavefunctions in
Minkowski-space timesSU(3)-symmetric wavefunctions in the higher dimensions? Quarks
could then be coupled to gluons in anSU(3)-invariant fashion, as required by QCD.

We will explore this hypothesis in the remainder of the paper.

2. Solutions to the factored higher-dimensional Klein–Gordon equation

The equation to be factored is the seven-dimensional Klein–Gordon equation

(� − 1̃+ α̃4X̃2)φ = 0 (1)

where the Minkowski-spaceM4 is spanned by the coordinates (x0, x1, x2, x3) and the higher-
dimensional spacẽR3 is spanned by the coordinates (x̃1, x̃2, x̃3). (R̃3-quantities will be
identified by subscripts rather than superscripts for convenience in what follows.) The
d’Alembertian� = ∑3

µ=0 g
µν∂2/∂xµ∂xν with gµν = diag(1,−1,−1,−1), the Laplacian

1̃ = ∑3
j̃=1 ∂

2/∂x̃2
j̃
, and the HO termX̃2 ≡ ∑3

j̃=1 x̃
2
j̃
. The scale inR̃3 is set by α̃, an

adjustable, real constant of dimension mass or inverse length†.
To factor (1), one may take advantage of the fact that the equation is separable; i.e. if

one sets

φ(x, x̃) = φ(x)φ̃(x̃) (2)

then (1) separates into the equations

(� +M2)φ = 0 (3)

and

(1̃− α̃4X̃2 +M2)φ̃ = 0 (4)

whereM2 is the separation constant. Equations (3) and (4) can now be factored separately.
Because the factors will commute, one can be taken from each equation and the two added
to form the seven-dimensional Dirac equation.

Equation (3) is factored in the usual way; one can show that

1+M2 = (i 6 ∇ +M)(−i 6 ∇ +M) (5)

† Symbols relating toM4, R̃3, or M4 × R̃3 will appear: normally, with a tilde above, or in bold face type,
respectively.
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where 6 ∇ = ∑3
µ=0 γ

µ∂/∂xµ, with theγ µ being 4× 4 matrices satisfyingγ µγ ν + γ νγ µ =
2gµν , µ, ν = 0, 1, 2, 3. One can select one of the factors, say the right-most, to form the
Dirac equation

(−i 6 ∇ +M)ψ = 0. (6)

M is taken to be the mass of the particle.
Equation (4) in the higher dimensions cannot be factored so easily. We introduce a

linear, first-order differential operator̃H and pose the question, does

1̃− α̃4X̃2 +M2 ?= (H̃ +M)(−H̃ +M) = −H̃ 2 +M2 (7)

i.e. does

−1̃+ α̃4X̃2 ?= H̃ 2. (8)

Three gamma-matrices would suffice to factor the left-hand side of (8) if the HO term were
not present. As it is, another three gamma-matrices are required to eliminate thex̃j̃ ∂/∂x̃k̃
cross terms. Thus we try setting

H̃ = −i
3∑
j̃=1

γ̃j̃ ∂/∂x̃j̃ + α̃2
3∑
j̃=1

γ̃j̃+3x̃j̃ (9)

where

γ̃j̃ γ̃k̃ + γ̃k̃ γ̃j̃ = 2δj̃ k̃ j̃ , k̃ = 1, 2, . . . ,6. (10)

Even with six gamma-matrices, (9) does not quite satisfy (8) because of the derivative
operators in the cross terms. Instead (9) yields

H̃ 2 = −1̃+ α̃4X̃2 − iα̃2
3∑
j̃=1

γ̃j̃ γ̃j̃+3. (11)

However, choice (9) still turns out to beSU(3)-covariant, despite the extra term on the
right-hand side. Therefore we take our Dirac field operator to be one of the factors in the
centre of (7), say the right-most, and construct the candidate field equation

(H̃ −M)ψ̃(x̃) = 0. (12)

To guarantee that the massM be real, we makeH̃ Hermitian. This is accomplished by
choosing sixγ̃j̃ which are Hermitian.

H̃ given by (9) is somewhat ungainly. Since it is the ‘square root’ of a HO operator,
one suspects that it might be better to express (9) in terms of creation operators

ã
†
j̃

= (α̃x̃j̃ − α̃−1∂/∂x̃j̃ )/
√

2 j̃ = 1, 2, 3 (13)

and destruction operators

ãj̃ = (α̃x̃j̃ + α̃−1∂/∂x̃j̃ )/
√

2 j̃ = 1, 2, 3 (14)

satisfying

ãj̃ ãk̃ − ãk̃ ãj̃ = 0 j̃ , k̃ = 1, 2, 3 (15)

ã
†
j̃
ã

†
k̃
− ã

†
k̃
ã

†
j̃

= 0 j̃ , k̃ = 1, 2, 3 (16)

and

ãj̃ ã
†
k̃
− ã

†
k̃
ãj̃ = δj̃ k̃ j̃ , k̃ = 1, 2, 3. (17)
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Indeed, if (9) is so expressed, then one finds that

H̃ =
√

2α̃
3∑
j̃=1

(θ̃
†
j̃
ãj̃ + θ̃j̃ ã

†
j̃
) (18)

where

θ̃j̃ = (iγ̃j̃ + γ̃j̃+3)/2 j̃ = 1, 2, 3 (19)

and its Hermitian conjugate

θ̃
†
j̃

= (−iγ̃j̃ + γ̃j̃+3)/2 j̃ = 1, 2, 3. (20)

The six matricesθ̃ †
j̃

and θ̃j̃ turn out to be creation and annihilation operators, too, but of
the anticommuting or Dirac variety; from (10) one finds that

θ̃j̃ θ̃k̃ + θ̃k̃ θ̃j̃ = 0 j̃ , k̃ = 1, 2, 3 (21)

θ̃
†
j̃
θ̃

†
k̃

+ θ̃
†
k̃
θ̃

†
j̃

= 0 j̃ , k̃ = 1, 2, 3 (22)

and

θ̃j̃ θ̃
†
k̃

+ θ̃
†
k̃
θ̃j̃ = δj̃ k̃ j̃ , k̃ = 1, 2, 3. (23)

We now construct the ‘square root’ of the seven-dimensional Klein–Gordon equation (1)
by combining (6) and (12) (and (18)) to form

(−i 6 ∇ ⊗ 1̃ + 1 ⊗ H̃ )ψ = 0 (24)

here 1 and̃1 are unit matrices inM4 andR̃3, respectively, andψ = ψ(x)⊗ ψ̃(x̃). We will
take (24) to be our candidate Dirac equation for quarks†.

We must now solve for the eigensolutions ofH̃ in R̃3. One suspects that these solutions
will reveal SU(3) symmetry because the solutions to the parent HO operator (4) display
SU(3) symmetry [4]. If H̃ is indeedSU(3) symmetric, then there will be a set ofSU(3)
generators which commute with it. We will look for such a set, as the eigenfunctions of
the Cartan subalgebra can then be used as basis functions forψ̃ .

It is well known [5] that aU(3) algebra can be created from the Bose creation and
destruction operators̃a†

j̃
andãj̃ , namely, the algebrãa†

ĩ
ãj̃ , ĩ, j̃ = 1, 2, 3. Theseã†

ĩ
ãj̃ satisfy

theU(3) (andSU(3)) vector-multiplication rule

[ã†
ĩ
ãj̃ , ã

†
k̃
ãl̃ ] = δj̃ k̃ ã

†
ĩ
ãl̃ − δl̃ ĩ ã

†
k̃
ãj̃ ĩ, j̃ , k̃, l̃ = 1, 2, 3. (25)

The ã†
ĩ
ãj̃ commute with the HO parent-operator (4) and account for theSU(3)-symmetry

of its solutions. However, thẽa†
ĩ
ãj̃ do not commute withH̃ . Rather,

[H̃ , ã†
ĩ
ãj̃ ] =

√
2α(θ̃ †

ĩ
ãj̃ − θ̃j̃ ã

†
ĩ
) ĩ, j̃ = 1, 2, 3. (26)

† Technically the ten gamma-matrices in (24) are not Dirac matrices because the four matricesγ µ ⊗ 1̃ commute
with the six matrices 1⊗ γ̃j̃ . However if we multiply (24) on the left by 1⊗ γ̃7, whereγ̃7 = iγ̃1γ̃2γ̃3γ̃4γ̃5γ̃6, then
the resulting gamma-matrices in (24) do mutually anticommute and are true Dirac matrices; i.e. if we denote

γ µ ⊗ γ̃7 = γµ µ = 0, 1, 2, 3 = µ

1 ⊗ γ̃7γ̃j̃ = γµ µ = 4, 5, . . . ,9 = 3 + j̃

then

γµγν + γνγ µ = 2gµν µ,ν = 0, 1, 2, . . . ,9

whereg = diag(1,−1,−1, . . . ,−1). The solutionsψ of (24) are unaffected if the equation is multiplied on the
left by 1⊗ γ̃7, so we shall continue to refer to (24) as the candidate Dirac equation for quarks.
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Thus theã†
ĩ
ãj̃ cannot be generators of anySU(3) symmetry that solutions to (12) might

embody.
Another U(3)-algebra can be constructed from the Dirac creation and destruction

operatorsθ̃ †
j̃

and θ̃j̃ , that algebra being thẽθ †
ĩ
θ̃j̃ , ĩ, j̃ = 1, 2, 3. From (21)–(23), one

can show that this algebra satisfies theU(3) vector-multiplication rule

[θ̃ †
ĩ
θ̃j̃ , θ̃

†
k̃
θ̃l̃ ] = δj̃ k̃ θ̃

†
ĩ
θ̃l̃ − δl̃ĩ θ̃

†
k̃
θ̃j̃ ĩ, j̃ , k̃, l̃ = 1, 2, 3. (27)

However, this algebra does not commute withH̃ either. Instead

[H̃ , θ̃ †
ĩ
θ̃j̃ ] = −

√
2α(θ̃ †

ĩ
ãj̃ − θ̃j̃ ã

†
ĩ
) ĩ, j̃ = 1, 2, 3. (28)

But one can see from (26) and (28) thatH̃ does commute with the sum

Ẽĩj̃ = ã
†
ĩ
ãj̃ + θ̃

†
ĩ
θ̃j̃ ĩ, j̃ = 1, 2, 3 (29)

viz.,

[H̃ , Ẽĩj̃ ] = 0 ĩ, j̃ = 1, 2, 3. (30)

Furthermore, theẼĩj̃ , being the sum of thẽa†
ĩ
ãj̃ and theθ̃ †

ĩ
θ̃j̃ , also satisfy aU(3) vector-

multiplication rule:

[Ẽĩj̃ , Ẽk̃l̃ ] = δj̃ k̃Ẽĩl̃ − δl̃ĩ Ẽk̃j̃ ĩ, j̃ , k̃, l̃ = 1, 2, 3. (31)

These generators are apparently the sought-forU(3) algebra. They guarantee that the
eigenfunctions ofH̃ will be U(3) (andSU(3)) symmetric†.

We can now solve for the eigenfunctions ofH̃ , advantageously using representations
of the Ẽĩj̃ as basis functions. As noted earlier, these representations will be eigenfunctions

of the Cartan subalgebra (Ẽ11, Ẽ22, Ẽ33). We will solve for the eigenfunctions by first
constructing explicit representations of the sixθ̃ĩ and θ̃ †

ĩ
, and then constructing̃θ †

1 θ̃1, θ̃ †
2 θ̃2,

and θ̃ †
3 θ̃3.

Recall that six gamma-matrices are required to construct theθ̃ĩ and θ̃ †
ĩ
. Wilczek and

Zee [6] remind us that representing six (or seven) gamma-matrices requires 8× 8 matrices,
and they provide a prescription for constructing them. Starting with their rule, we found it
possible to order the gamma-matrices so that each of the sixθ̃ĩ andθ̃ †

ĩ
has just four elements

of 1 or −1; one set is

θ̃1 =


0 −e21 0 0
e21 0 0 0
0 0 0 e21

0 0 −e21 0

 θ̃
†
1 =


0 e12 0 0

−e12 0 0 0
0 0 0 −e12

0 0 e12 0


† We were led to the generators̃Eĩj̃ from a study inR̃4 of the Dirac-equationSO(4) generators

Jµν = Lµν + Sµν µ, ν = 0, 1, 2, 3

where

Lµν = −i(xµ∂/∂xν − xν∂/∂xµ) = −i(a†
µaν − a†

νaµ)

and

Sµν = −(i/4)(γµγν − γνγµ);
thus one can write

Jµν = −i(a†
µaν + 1

4γµγµ)+ i(a†
νaµ + 1

4γνγµ).

We found thata†
µaν + 1

4γµγν is not anSU(4) generator (of course), but thata†
µaν + θ

†
µθν is.
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θ̃2 =


0 e22 0 0
e11 0 0 0
0 0 0 −e22

0 0 −e11 0

 θ̃
†
2 =


0 e11 0 0
e22 0 0 0
0 0 0 −e11

0 0 −e22 0


and

θ̃3 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 θ̃
†
3 =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 (32)

where

e11 =
(

1 0
0 0

)
e12 =

(
0 1
0 0

)
e21 =

(
0 0
1 0

)
e22 =

(
0 0
0 1

)
and

1 =
(

1 0
0 1

)
. (33)

With this choice of theθ̃ĩ and θ̃ †
ĩ
, the Cartan subalgebra takes the form

Ẽ11 = ã
†
1ã1 +


e11 0 0 0
0 e11 0 0
0 0 e11 0
0 0 0 e11

 (34)

Ẽ22 = ã
†
2ã2 +


e11 0 0 0
0 e22 0 0
0 0 e11 0
0 0 0 e22

 (35)

and

Ẽ33 = ã
†
3ã3 +


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 . (36)

To solve for the eigenfunctions of the Cartan subalgebra, it is convenient to recall the
eigenfunctions of the operatorsã†

ĩ
ãĩ , ĩ = 1, 2, 3. These eigenfunctions satisfy

ã
†
ĩ
ãĩ φ̃ñĩ (α̃x̃ĩ ) = ñĩ φ̃ñĩ (α̃x̃ĩ ) ĩ = 1, 2, 3, ñĩ = 0, 1, 2, . . . (37)

(no sum oñi), where

φ̃ñĩ (α̃x̃ĩ ) = constantHñĩ (α̃x̃ĩ ) exp(− 1
2α̃

2x̃2
ĩ
) (38)

with Hñĩ a Hermite polynomial of degreẽnĩ . Thus an eigenfunction of the trio of operators

ã
†
1ã1, ã†

2ã2, and ã†
3ã3 is the product

3∏
ĩ=1

φ̃ñĩ (α̃x̃ĩ ) ≡ φ̃ñ1,ñ2,ñ3. (39)

Now consider the eigenfunctions of the Cartan subalgebra (Ẽ11, Ẽ22, Ẽ33). Each of
these generators is a diagonal 8× 8 matrix with elements either̃a†

ĩ
ãĩ or ã†

ĩ
ãĩ + 1. Therefore
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the threeẼĩĩ have eight-component eigenfunctions8̃ which require only a single non-zero
componentφ̃ñ′

1
φ̃ñ′

2
φ̃ñ′

3
, ñ′

ĩ
= 0, 1, 2, . . ., ĩ = 1, 2, 3 to satisfy

Ẽ118̃ = ñ18̃ Ẽ228̃ = ñ28̃ Ẽ338̃ = ñ38̃; (40)

here each̃nĩ = ñ′
ĩ

or ñ′
ĩ
+ 1 depending on whether the corresponding element inẼĩĩ is ã†

ĩ
ãĩ

or ã†
ĩ
ãĩ + 1. Thus theñĩ are non-negative integers.

For every triplet of non-negative integers (ñ1, ñ2, ñ3), there are (up to) eight linearly
independent solutions̃8, namely

8̃
(1)
ñ1,ñ2,ñ3

= (φ̃ñ1−1,ñ2−1,ñ3, 0, 0, 0, 0, 0, 0, 0)T

[3pt ]8̃(2)
ñ1,ñ2,ñ3

= (0, φ̃ñ1,ñ2,ñ3, 0, 0, 0, 0, 0, 0)T

[3pt ]8̃(3)
ñ1,ñ2,ñ3

= (0, 0, φ̃ñ1−1,ñ2,ñ3, 0, 0, 0, 0, 0)T

[3pt ]8̃(4)
ñ1,ñ2,ñ3

= (0, 0, 0, φ̃ñ1,ñ2−1,ñ3, 0, 0, 0, 0)T

[3pt ]8̃(5)
ñ1,ñ2,ñ3

= (0, 0, 0, 0, φ̃ñ1−1,ñ2−1,ñ3−1, 0, 0, 0)T

[3pt ]8̃(6)
ñ1,ñ2,ñ3

= (0, 0, 0, 0, 0, φ̃ñ1,ñ2,ñ3−1, 0, 0)T

[3pt ]8̃(7)
ñ1,ñ2,ñ3

= (0, 0, 0, 0, 0, 0, φ̃ñ1−1,ñ2,ñ3−1, 0)T

[3pt ]8̃(8)
ñ1,ñ2,ñ3

= (0, 0, 0, 0, 0, 0, 0, φ̃ñ1,ñ2−1,ñ3−1)
T .

(41)

(T denotes transpose, employed to save space.) Note that the indices of each element
φ̃ñ′

1,ñ
′
2,ñ

′
3

must be> 0.
These solutions may be conveniently classified according to their principal quantum

numberñ ≡ ñ1 + ñ2 + ñ3. This is the eigenvalue of the Casimir operator

Ẽ11 + Ẽ22 + Ẽ33 ≡ C̃1 = Ñ . (42)

For ñ = 0 there is just the one eigenfunction,8̃(2)
000. This is a singletSU(3) irreducible

representation which we will denotẽ80. (We know that it is a singlet because every shift
operator acting on it yields zero, viz.,̃Eĩj̃ 8̃0 = 0; ĩ, j̃ = 1, 2, 3, ĩ 6= j̃ .)

For ñ = 1, there are six eigenfunctions:̃8(2)100, 8̃
(2)
010, 8̃

(2)
001, and 8̃(3)

000, 8̃
(4)
000, 8̃

(6)
000. To

determine what irreps these make up, one may start with any eigenfunction and construct
the remaining members of the irrep using the shift operatorsẼ21, Ẽ32 andẼ13. In this way
one finds two triplet irreps which we will denote† 8̃(a1)

1 and8̃(a2)
1 .

Their eigenfunctions are listed in figure 1 next to plots of theirSU(3) eigenvalues
(m̃1, m̃2), wherem̃1 = 1

2(ñ1 − ñ2) and m̃2 = (ñ1 + ñ2 − 2ñ3)/
√

12. These triplets may be
distinguished by the eigenvalues of the operator

Ã = ã
†
1ã1 + ã

†
2ã2 + ã

†
3ã3; (43)

Ã8̃ñ = Ã′8̃ñ with Ã′ = 1 for 8̃(a1)
1 and 0 for8̃(a2)

1 .
For ñ = 2 there are 18 eigenfunctions of the Cartan subalgebra. One can show that

these comprise two6s which we will denote8̃(a1)
2 and 8̃(a2)

2 , and two3s which we will
denote8̃(b1)

2 and8̃(b2)
2 . The6s have eigenvalues̃A′ = 2 and 1, respectively, and the3s have

eigenvaluesÃ′ = 1 and 0, respectively. Weight diagrams of these multiplets are sketched
in figure 2.

† When referring to an entire multiplet, we will replace the triplet subscripts (ñ1, ñ2, ñ3) by ñ.
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Figure 1. SU(3) weight diagrams of the twõn = 1 irreducible representations of the generators
Ẽĩj̃ , ĩ, j̃ = 1, 2, 3; basis functions listed at weight positions; note signs. Eigenvalues for each
irrep listed underneath.

For ñ = 3 and greater there are always six multiplets; they always appear in pairs,
and the multiplets within each pair always have eigenvaluesÃ′ which differ by one unit.
Multiplets throughñ = 3 are sketched in figure 2.

It is now a simple matter to solve for the eigenfunctions ofH̃ ψ̃ = Mψ̃ . One finds by
direct calculation that

H̃ 8̃0 = 0. (44)

Thus the lowest-lying eigenstate of̃H is

8̃0 ≡ ψ̃0 (45)

with eigenmassM0 = 0.
Next one finds that

H̃ 8̃
(a1)
1 = −

√
2α̃8̃(a2)

1 (46)

and

H̃ 8̃
(a2)
1 = −

√
2α̃8̃(a1)

1 . (47)

Thus the next lowest eigenstates ofH̃ are

(8̃
(a1)
1 − 8̃

(a2)
1 )/

√
2 ≡ ψ̃

(a+)
1 (48)

and

(8̃
(a1)
1 + 8̃

(a2)
1 )/

√
2 ≡ ψ̃

(a−)
1 (49)

with eigenmassesM1 = √
2α̃ and−√

2α̃, respectively.
In the case of thẽn = 2 sextets one finds that

H̃ 8̃
(a1)
2 = −

√
4α̃8̃(a2)

2 (50)
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Figure 2. Weight diagrams of̃n = 0–3 irreps of theSU(3) generatorsẼĩj̃ . These are also the

weight diagrams of thẽn = 0–3 eigenfunctions of the mass operatorH̃ .

and

H̃ 8̃
(a2)
2 = −

√
4α̃8̃(a1)

2 (51)

so the corresponding eigenfunctions ofH̃ are

(8̃
(a1)
2 − 8̃

(a2)
2 )/

√
2 ≡ ψ̃

(a+)
2 (52)

and

(8̃
(a1)
2 + 8̃

(a2)
2 )/

√
2 ≡ ψ̃

(a−)
2 (53)

with eigenmassesM2 = √
4α̃ and−√

4α̃, respectively. Similarly, in the case of theñ = 2
triplets one finds that

H̃ 8̃
(b1)
2 = −

√
4α̃8̃(b2)

2 (54)

and

H̃ 8̃
(b2)
2 = −

√
4α̃8̃(b1)

2 (55)

so the corresponding eigenfunctions ofH̃ are

(8̃
(b1)
2 − 8̃

(b2)
2 )/

√
2 ≡ ψ̃

(b+)
2 (56)

and

(8̃
(b1)
2 + 8̃

(b2)
2 )/

√
2 ≡ ψ̃

(b−)
2 (57)
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again with eigenmassesM2 = √
4α̃ and−√

4α̃, respectively.
ThusH̃ not only generatesSU(3) multiplets, but an ascending mass-spectrum of them.

We might have anticipated this from the properties of the parent, equation (4).
Note thatH̃ acts to term onẽn = 2 sextet into just the other sextet, or oneñ = 2 triplet

into just the other triplet. Why is this?
(i) H̃ commutes with the (second) Casimir operator

3∑
ĩ,j̃=1

Ẽĩj̃ Ẽj̃ ĩ ≡ C̃2 (58)

so it cannot change the eigenvalues ofC̃2 (which we will denoteC̃ ′
2); the sextets have one

common eigenvaluẽC ′
2, the triplets another;

C̃28̃
(ai)

2 = 88̃(ai)

2 i = 1, 2 (59)

and

C̃28̃
(bi)

2 = 48̃(bi)

2 i = 1, 2. (60)

(ii) H̃ is odd in ãj̃ and ã†
j̃
, so it changes the value of̃A′ by one unit.

For ñ = 3 multiplets, where three pairs of like multiplets occur,H̃ acts on oneSU(3)
multiplet and just turns it into its sister multiplet because each pair shares a common
eigenvalueC̃ ′

2 and the values of the three pairs are distinct. Thus theñ = 3 eigenfunctions
of H̃ are

(8̃
(m1)
3 ∓ 8̃

(m2)
3 )/

√
2 ≡ ψ̃

(m±)
3 m = a, b, c (61)

with eigenmassesM3 = ±√
6α̃.

Similar eigenfunctionsψ̃(a±)
ñ

, ψ̃(b±)
ñ

and ψ̃(c±)
ñ

occur for ñ > 3, with eigenmasses
Mñ = ±√

2ñα̃.
We can now determine the solutions to the candidate Dirac field equation

(−i 6 ∇ ⊗ 1̃ + 1 ⊗ H̃ )ψ = 0. (62)

(See footnote below (24).) The solutions are simple direct productsψ = ψ(x) ⊗ ψ̃(x̃),
whereψ(x) satisfies theM4-equation

(−i 6 ∇ +M)ψ = 0 (63)

and ψ̃(x̃) satisfies theR̃3-equation

(H̃ −M)ψ̃(x̃) = 0. (64)

If the massM of the multiplet is positive, as in the case forψ̃(x̃) = ψ̃
(m+)
ñ

, m = a, b, c,
then the Minkowski-space wavefunctionψ satisfies the equation(

−i 6 ∇ +
√

2ñα̃
)
ψñ(x) = 0. (65)

(Indices denoting momentumEp and mechanical spinπ in Minkowski space are suppressed,
i.e., ψ Ep,π,Mñ

(x) ≡ ψñ(x).) If the massM of the multiplet is negative, as is the case for
ψ̃(x̃) = ψ̃

(m−)
ñ

, m = a, b, c, then the corresponding Minkowski-space wave equation can
be multiplied on the left byγ 5 ≡ iγ 0γ 1γ 2γ 3 to yield the positive-mass equation(

−i 6 ∇ +
√

2ñα̃
)
γ 5ψñ(x) = 0. (66)
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Thus we arrive at the pair of solutions

ψñ(x)⊗ ψ̃
(m+)
ñ

(x̃) ≡ ψ(m+)
ñ (x) (67)

and

γ 5ψñ(x)⊗ ψ̃
(m−)
ñ

(x̃) ≡ ψ(m−)
ñ (x) (68)

with Mñ = √
2ñα̃.

The full complement of solutions consists of the ground stateψ0 ⊗ ψ̃0 ≡ ψ0, plus
ascending pairsψ(m±)

ñ for ñ = 1, 2, 3, . . ., with m = a for ñ = 1, m = a, b for ñ = 2,
andm = a, b, c for ñ > 3. The weight diagrams for eigenstates with lowñ are shown in
figure 2.

3. Discussion

In order to generate Dirac eigenstates augmented by QCD colour quantum numbers, we have
proposed the field equation (24), which is essentially the ‘square root’ of a Klein–Gordon
equation in seven flat dimensions with a HO term in the extra three dimensions. Dirac states
with quark colour quantum numbers do indeed appear, namely the two solutions denoted

ψ(a±)1 in section 2. These states can be coupled to eight coloured gluonsW
ĩj̃
µ to yield the

SU(3)-invariant interaction Lagrangian

Lint = g√
2

3∑
ĩ=1

3∑
j̃=1

∫ ∫ ∫
ψγ µ(Ẽĩj̃ − 1

3Ñ)W
ĩj̃
µ ψ d3x (69)

(Ñ is defined by (42)). If statesψ in (69) are limited to quark triplets, then this Lagrangian
is equivalent to the standard QCD interaction Lagrangian

Lint
QCD = g

2

3∑
c,d=1

ψcγ
µλkcdG

k
µψd (70)

(see, e.g., [7]), where

G3
µ = (W 11

µ −W 22
µ )/

√
2 (71)

G8
µ = (W 11

µ +W 22
µ − 2W 33

µ )/
√

6 (72)

and

G1
µ = (W 12

µ +W 21
µ )/

√
2 (73)

G2
µ = i(W 12

µ −W 21
µ )/

√
2 (74)

etc.
Equation (24) generates a surprisingly rich spectrum of states, especially considering

that all of the eigenfunctions are real. Particularly interesting is the feature that, except for
the ground state, all of the multiplets appear in pairs. Thus it is natural to ask whether these
pairs can be identified with another symmetry of standard-model Dirac particles, namely,
weak isospin.

If these pairs are indeedbona fideweak isospin pairs, then there exist operators, say
6̃1, 6̃2, 6̃3, and Ĩ , which, when operating on one member of any doublet, (i) only turn it
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into a linear combination of the same doublet states, and (ii) obey the vector-multiplication
rules ofSU(2), namely

[6̃ĩ , 6̃j̃ ] = 2i6̃k̃ ĩ, j̃ , k̃ = 1, 2, 3 cyclic. (75)

Condition (i) is satisfied if the operator commutes with the 1⊗ Ẽĩj̃ , ĩ, j̃ = 1, 2, 3. We have
found four such operators, viz.,

γ 5 ⊗
3∑
ĩ=1

(θ̃
†
ĩ
ãĩ + θ̃ĩ ã

†
ĩ
) ≡ 6̃′

1

(
= H̃ /

√
2α̃

)
(76)

iγ 5 ⊗
3∑
ĩ=1

(θ̃
†
ĩ
ãĩ − θ̃ĩ ã

†
ĩ
) ≡ 6̃′

2 (77)

1 ⊗
3∑
ĩ=1

(ã
†
ĩ
ãĩ − θ̃

†
ĩ
θ̃ĩ ) ≡ 6̃′

3 (78)

and

1 ⊗
3∑
ĩ=1

(ã
†
ĩ
ãĩ + θ̃

†
ĩ
θ̃ĩ ) ≡ Ñ . (79)

However,6̃′
1, 6̃′

2, and 6̃′
3 do not quite obey the vector-multiplication rules (75). Two of

the relations are obeyed, viz.

[6̃′
2, 6̃

′
3] = 2i6̃′

1 (80)

and

[6̃′
3, 6̃

′
1] = 2i6̃′

2. (81)

However, the third is not;

[6̃′
1, 6̃

′
2] = 2i6̃′

3 − 4iP̃ (82)

where

P̃ = 1 ⊗
3∑

ĩ,j̃=1

θ̃
†
ĩ
θ̃j̃ ã

†
j̃
ãĩ . (83)

In addition, the6̃′2
ĩ

do not equal the unit matrix as they should in a two-dimensional

representation ofSU(2). Rather,6̃′
1

2 = 6̃′
2

2 = Ñ and6̃′
3

2 ∼ Ñ2.
If, on the other hand, operators can be found whichdo obey the vector-multiplication

rules ofSU(2) when operating on the doublets, then it may be possible to identify all three
generations of quarks and leptons with representations of (12) extended to four dimensions,
i.e. with

H̃ =
√

2α̃
4∑
j̃=1

(θ̃
†
j̃
ãj̃ + θ̃j̃ ã

†
j̃
). (84)

The eigenfunctions of (84) are exactSU(4) representations, and resemble those depicted in
figure 2: a ground state, two4s in place of the3s, two 10s in place of the6s, etc. In an
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Figure 3. Weight diagrams of̃n = 0–2 irreps of the mass operator̃H ; some Dirac-particle
assignments are indicated.

SU(3) ⊗ U(1) decomposition, each4 breaks to3 ⊕ 1, each10 breaks to6 ⊕ 3 ⊕ 1, etc.
Leptons would be identified with the1s and quarks with the3s.

These assignments can be inferred from the seven-dimensional model if we imagine that
the SU(3) states are replaced by toySU(2) states. Then quark triplets become doublets,
leptons remain singlets, and the first two generations can be identified with theñ = 0–2
irreps as in figure 3. The ground state could be a candidate for dark matter. Other
unidentified states would be predictions.
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